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Abstract
Analytical simulations of fast-electron currents induced by high-density laser-plasma interactions

require estimation of various plasma and beam parameters, including temperatures, densities, and

collision rates. This note describes a technique used to estimate or calculate these parameters for

the case of contemporary multi-terawatt experiments using foil targets as well as for anticipated

fast-ignition-scale experiments.
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I. INTRODUCTION

Fast ignition is a technique which uses high-intensity short-pulse lasers to heat a fuel

target and ignite a thermonuclear reaction [1]. The success of this technique relies on

transporting energy through ever-denser plasma to a point of high pressure inside a target.

A 1 micron laser penetrates fully ionized plasma only to the critical density at about

3 mg/cm3 (in DT) where it can transfer energy to a beam of high-energy electrons, which in

fast ignition would penetrate to the peak fuel density of about 300 g/cm3 and heat the target

to an ignition temperature of about 10 keV. Alternatively, these electrons could be used to

accelerate a beam of protons from an intermediary target which (with ballistic focusing)

could heat the fuel [2].

In either case, the transport of these ‘hot’ electrons is not well understood. A number

of phenomena could attenuate the electron beam sufficiently to preclude the transport of

sufficient energy. Ohmic potential due to the return current and a two-stream electromag-

netic instability known as the beam-Weibel instability (analogous to the well-known Weibel

instability [3]) could both significantly impede electron transport.

The growth rate of this Weibel-like beam instability is dependent upon collision rates

and plasma densities and temperatures. Estimation of collision rates and other relevant

plasma parameters is therefore important and is the subject of this note. Two cases will be

considered: contemporary laser-plasma experiments using aluminum as the target material

[4], and full scale fast-ignition experiments using compressed deuterium-tritium targets.

II. PLASMA PARAMETERS OF INTEREST

A. Plasma temperature

The temperature of a laser-induced plasma as a function of density must be estimated.

Temperatures in electron-heated aluminum foil targets on the order of 100 eV have been

observed in experiment [5]. At lower densities, down to the critical density, there is an

approximate pressure equilibrium resulting in a roughly 1/ρ temperature dependence [6].

In ICF targets (compressed DT) the temperatures at the highest density must reach 10

keV for ignition to occur. A time-averaged temperature of 3 keV is assumed. At lower

densities, the 1/ρ dependence is used to estimate the temperature.
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B. Electron beam temperatures

The characteristic parameters of the hot electron beam in near-term metal foil exper-

iments can be estimated from previous experiments. Beam temperatures of 600 keV are

typical [7], and the 20◦ half-angle spread of the beam as it propagates through the tar-

get observed in experiment geometrically corresponds to a transverse beam temperature of

about 30 keV.

In the fast ignition scenario, the beam energies must be limited to about 1 MeV in order

for the electrons to be absorbed within the target. A 20◦ half-angle spread of this beam

would correspond to a transverse beam temperature of about 35 keV.

C. Hot electron density

In the case of the near-term experiments, the hot electron density is estimated from

previous experiments. On the Vulcan laser at the Rutherford-Appleton Laboratory for

example, a typical laser shot delivers 100 Joules in one picosecond, with about one-third

of the energy concentrated in a radius of five microns; this corresponds to a laser in-

tensity of 4.2× 1019 W/cm2. The laser energy is converted to hot electron energy with

an efficiency of approximately 30% [8], resulting in an electron beam with an intensity of

1.3× 1019 W/cm2. Abrupt widening of the electron beam to about 35 microns in diameter

is observed in experiment; this lowers the intensity to 2.6× 1017 W/cm2 or, alternatively,

1.6× 1030 MeV/s · cm2. If the average electron energy is assumed to be 600 keV, the cur-

rent density is 4.3× 1011 A/cm2; with a relativistic beta of .89, the electron density of this

expanded beam is estimated to be approximately 1020 cm−3.

In the case of the fast ignition experiment, the hot electron density is determined to be

the minimum required for 1 MeV electrons to carry sufficient energy to ignite the target [9].

The ignition threshold beam intensity is calculated to be

Iig = 2.4× 1019

(
ρ

100 g/cm3

).95 [
W

cm2

]
and the appropriate beam radius has been estimated to be 17 microns. At 300 g/cm3,

this is Iig = 6.8× 1019 W/cm2 = 4.3× 1032 MeV/s · cm2. At 1 MeV per electron, this gives

a current density of 6.8× 1013 A/cm2. At a relativistic beta of .94, this corresponds to
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a density of 1.5× 1022cm−3. The electrons are excited from the background by the laser

interaction; the resulting space charge prevents anything more than a fraction of the available

electrons to be accelerated. For this analysis, a 10% excitation limit is applied; the hot

electron density can never be more than one-tenth of the background cold electron density.

D. Collision rates

The average electron relaxation time of an electron in a plasma, as determined by Lee

and More [10], is

τ =
3
√

m (kT )
3
2

2
√

2π (Z∗)2 nie4 ln Λ

[
1 + exp

(
− µ

kT

)]
F 1

2

{ µ

kT

}
where m is the electron mass, k is the Boltzmann constant, T is the plasma temperature,

Z∗ is the average ionization state, ni is the ion number density, e is the electron charge,

ln Λ is the Coulomb logarithm, µ is the chemical potential, and F 1
2

{
µ

kT

}
is the Fermi-Dirac

integral of order 1
2

of the fugacity. The collision rate is the reciprocal of the relaxation time.

These collision rate calculations were benchmarked against Figure 3 of Lee and More.

For numerical analyses requiring the determination of collision rates, the ion number

density is used as the independent variable. At each density, Z∗, ln Λ, µ, and F 1
2

{
µ

kT

}
must

be estimated or calculated.

E. Ionization state

At low temperatures, the effective ionization state of a material is the same as its number

of conduction-band electrons. For aluminum, this number is three; for hydrogen, it is zero.

As the temperature increases, the ions are thermally ionized to higher states. Using a

Thomas-Fermi model, the average thermal ionization can be calculated as a function of

pressure and temperature [11]. (This model may overestimate the ionization, as it assumes

that the material in question is in equilibrium.) The plasmas involved in this research are

not in equilibrium; the conditions used to make the calculations in this note are ‘snapshots’

of a transient process, especially at the lower plasma densities.
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F. Coulomb logarithm

The Coulomb logarithm is defined as the logarithm of the plasma parameter Λ, defined

as Λ ≡
√

1 + b2max

b2max
where bmax and bmin are the upper and lower cutoffs respectively of the

Coulomb scattering impact parameter.

The maximum impact parameter is determined by screening effects. At high temperatures

and low densities, where the Debye-Hückel theory is applicable, this parameter can be set

to the Debye-Hückel screening length λDH :

1

λ2
DH

=
4πnee

2

kT
+

4πni (Z
∗e)2

kTi

where Ti is the ion temperature and ne is the electron number density. At higher densities

or lower temperatures, this equation must be modified to account for degeneracy:

1

λ2
DH

=
4πnee

2

kT

F ′
1
2

{
µ

kT

}
F 1

2

{
µ

kT

} +
4πni (Z

∗e)2

kTi

≈ 4πnee
2

k
√

T 2 + T 2
F

+
4πni (Z

∗e)2

kTi

where TF is the Fermi temperature. On the short time scale of the laser pulse, the ions are

considered to be immobile (that is, Ti = 0) and so in each case the second term is neglected.

As the plasma density increases, the Debye-Hückel model becomes invalid when the

calculated screening length drops below the inter-atomic distance 1
n3 . The maximum impact

parameter is then bmin = max
[
λDH , 1

n3
i

]
.

The minimum impact parameter is the classical closest approach distance Z∗e2

mv2 . This dis-

tance decreases with temperature and thus electron energy, but is limited by the Heisenberg

uncertainty to be greater than half of the deBroglie wavelength h
mv

. The minimum impact

parameter is then bmin = max
[

Z∗e2

mv2 , h
mv

]
. Evaluated at the average thermal electron velocity

v =
√

3kT
m

, bmin = max
[

Z∗e2

3kT
, h

2
√

3mkT

]

G. Chemical potential and Fermi-Dirac integral

The probability of a fermion being found in a state of given energy E is given by the

Fermi-Dirac distribution f {E} = 1

exp(E−µ
kT )+1

= 1

exp( E
kT ) exp(−µ

kT )+1
where µ is the chemical

potential (the energy required to add another particle to the system). In principle it is

possible to measure both the energies of the electron states and the chemical potential
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directly, but in practice the energy levels are proposed by a model of the electron states and

the corresponding chemical potential is determined implicitly.

The number of states in a given energy interval dE is given by g {E} dE where g {E} is

the state density function. In a system with a constant potential (the free electron gas, for

example) the density function is

g {E} = gD

(
2πV

h3

)
(2m)

3
2

√
E

where V is volume, m is the particle mass, and gd is the spin degeneracy 2S+1, which is 2

for the spin-1
2

electron.

The chemical potential can be determined implicitly from the integral for the number of

particles:

N =

∫ ∞

0

gD

(
2πV

h3

)
(2m)

3
2

√
E

1

exp
(

E
kT

)
exp

(−µ
kT

)
+ 1

dE

= gd

(
2πV

h3

)
(2m)

3
2

∫ ∞

0

√
EdE

exp
(

E
kT

)
exp

(−µ
kT

)
+ 1

With the substitutions t = E
kT

, dt = dE
kT

, and α = µ
kT

, this becomes:

N = gD

(
2πV

h3

)
(2m)

3
2

∫ ∞

0

(kT )
3
2

√
E

√
tdt

ete−α + 1

= gD

(
2πV

h3

)
(2mkT )

3
2

∫ ∞

0

√
E

√
tdt

ete−α + 1

The integral F 1
2
{α} =

∫ ∞
0

√
tdt

ete−α+1
is the Fermi-Dirac integral of order 1

2
of the fugacity

α = µ
kT

. The correct chemical potential µ is the solution of N = gD

(
2πV
h3

)
(2m)

3
2 F 1

2

{
µ

kT

}
.

In the degenerate limit (T → 0) the chemical potential of plasma tends towards the Fermi

energy and the fugacity tends towards infinity. The behavior of the chemical potential

in the nondegenerate limit is not as simple; as the temperature increases, the chemical

potential first rises, then precipitously falls faster than T increases. In the nondegenerate

limit (T →∞), both the chemical potential and the fugacity tend towards negative infinity.
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III. RESULTS

For a range of densities along the path of the electron beam into the aluminum and

DT targets, the electron temperatures and hot electron densities have been estimated and

the remaining relevant parameters have been calculated and are given in Tables I and II

respectively.

These parameters are currently being used in modeling of the beam-Weibel instability

to predict the effect of the instability upon electron propagation in both near-term and

full-scale Fast Ignition experiments.

Cold Aluminum .001 g/cm3 .01 g/cm3 .1 g/cm3 1 g/cm3 2.7 g/cm3

Ion density
(
cm−3

)
2.23× 1019 2.23× 1020 2.23× 1021 2.23× 1022 2.23× 1023

Cold electron density
(
cm−3

)
2.90× 1020 2.90× 1021 2.89× 1022 2.50× 1023 4.72× 1023

Hot electron density
(
cm−3

)
2.90× 1019 1.0× 1020 1.0× 1020 1.0× 1020 1.0× 1020

Cold electron temperature (keV) 108 10.8 1.08 .108 .04

Hot electron temperature (keV) 28.978 28.978 28.978 28.978 28.978

Beam energy (keV) 600 600 600 600 600

Average ion charge 13 12.999 12.966 11.188 7.833

Chemical potential (keV) -2205.33 -158.364 -9.622 -.355 -.0426

Cold electron collision rate
(
s−1

)
2.95× 109 7.47× 1011 1.5× 1014 1.39× 1016 3.73× 1016

Cold electron collision rate (×ωp) 3.07× 10−6 2.46× 10−4 1.56× 10−2 4.94× 10−1 9.64× 10−1

Hot electron collision rate
(
s−1

)
1.98× 1010 1.8× 1011 1.17× 1012 7.13× 1012 8.95× 1012

Hot electron collision rate (×ωp) 2.06× 10−5 5.93× 10−5 1.21× 10−4 2.53× 10−4 2.31× 10−4

Table I: Parameters for aluminum target using contemporary laser energies
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Table II: Parameters for DT target using fast-ignition-class laser

8



Acknowledgments

The authors would like to acknowledge Steve Libby for his assistance with chemical po-

tential theory. This work was performed under the auspices of the Ohio State University

College of Mathematical and Physical Sciences and the United States Department of En-

ergy National Nuclear Security Administration at the University of California Lawrence

Livermore National Laboratory under contract W-7405-Eng-48.

[1] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M.

Campbell, M. D. Perry, and R. J. Mason, Physics of Plasmas 1, 1626 (1994).

[2] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M.

Pennington, R. A. Snavely, S. C. Wilks, et al., Physical Review Letters 86, 436 (2001).

[3] E. S. Weibel, Physical Review Letters 2, 83 (1959).

[4] R. B. Stephens, R. A. Snavely, Y. Aglitskiy, F. Amiranoff, C. Andersen, D. Batani, S. D.

Baton, T. Cowan, R. R. Freeman, T. Hall, et al., Physical Review E 69, 066414 (2004).

[5] M. H. Key, in Third International Conference on Inertial Fusion Sciences and Applications

(2003).

[6] M. H. Key, Philosophical transactions of the Royal Society of London A300, 599 (1981).

[7] K. B. Wharton, S. P. Hatchett, S. C. Wilks, M. H. Key, J. Moody, V. Yanovsky, A. A.

Offenberger, B. A. Himmel, M. D. Perry, and C. Joshi, Physical Review Letters 81, 822

(1998).

[8] M. H. Key, M. D. Cable, T. E. Cowan, K. G. Estabrook, B. A. Hammel, S. P. Hatchett, E. A.

Henry, D. E. Hinkel, J. D. Kilkenny, J. A. Koch, et al., Physics of Plasmas 5, 1966 (1998).

[9] S. Atzeni, Physics of Plasmas 6, 3316 (1999).

[10] Y. T. Lee and R. M. More, Physics of Fluids 27, 1273 (1984).

[11] R. M. Moore, Tech. Rep. UCRL-84991-REV-1, LLNL (1991), URL http://www-r.llnl.gov/

tid/lof/documents/pdf/219378.pdf.

9


